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Theory for calculation of static structures of a liquid 
binary alloy using neutron scattering data 
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Okinawa 903-01, Japan 
$. Department of Physics, College of Science, Sultan Qaboos University, PO Box 32486, 
AI-Khod, Oman 

Received 12 February 1990 

Abstract. A theory for the calculation of static structures of a liquid binary alloy, using 
neutron scattering data on the concentration-concentration structure factor, is proposed, 
together with its validity criterion. On the basis of this criterion, the result of the modified 
mean spherical model is critically discussed. 

1. Introduction 

Since Ruppersberg and Reiter (1982) suggested an approach analysing the neutron 
scattering data on the concentration-concentration structure factor Sc,(q) in liquid 
binary alloys via the ordering potential u(T), it has been investigated in many systems 
(see, e.g., Copestake etal 1983, Ruppersberg 1983, Ruppersberg and Schirmacher 1984, 
Hoshino and Young 1986a, 1988, Ginoza et a1 1987). The basic assumption is also well 
known (Copestake etal 1983) (also see below). On using it, the approach has proved to 
be a reasonably useful tool. However, it is not always obvious whether the assumption 
is actually satisfied. The aim of this paper is to propose one possible theory for calculation 
of static structures by using the scattering data without this assumption, together with 
its validity criterion, and to discuss critically the result of the modified mean spherical 
model (MSM) (Ginoza 1987a, 1988). 

Now, in the ordering potential approach mentioned above, one first calculates the 
following quantity WexP(r) with the use of the available neutron scattering data 
( S X q ) )  for U q ) :  

with c1 the type-1 ion concentration, c2 = 1 - c1, p the total number density and = 
l/kBT, kB and Tbeing the Boltzmann constant and temperature respectively. One then 
identifies Wexp(r) and - u ( T )  for r > U ,  nhere U is a characteristic length such as the 
diameter of a hard sphere and 

u ( 4  = [(Pll(4 + ( P 2 2 ( r )  - 2(P12(r)1/2 (2) 
with painvise potentials q i j ( r ) ,  modelling the interionic forces. As an example, in figure 

0953-8984/90/265877 + 07 $03.50 @ 1990 IOP Publishing Ltd 5877 



5878 M Ginoza and W H Young 
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Figure 1. The function - W(r) (= - WexP(r) in the text) obtained from the neutron diffraction 
data of Ruppersberg and Reiter (1982) for liquid Li,Pb at several different temperatures: 
0 , 9 9 5  K; 0,1025 K; 0,1075 K; A, 1125 K; X ,  1225 K;-, fitting formula -10I2W(r) = 
50 exp(-l.lr)/r (from Copestake eta1 (1983)). 

1 we show the result obtained by Copestake et a1 (1983) who investigated this approach 
by using the neutron scattering data of Ruppersberg and Reiter (1982) for the liquid 
Li4Pb at several different temperatures, deduced the fitting formula of the long-range 
part of the ordering potential and obtained reasonably good static structure factors with 
the use of what this fitting formula suggested for q i j ( r ) .  

2. Theory 

Now, the direct correlation functions cij(r) are related to the partial total-correlation 
function hU(r) through the Ornstein-Zernike (oz) equation 

hU(r) = cU(r) + p 2 i I  ~i drl  cU(lr1 - rI)hU(rl). (3) 

With the use of this equation, Sc,(q) can be expressed in terms of the Fourier transforms 
Eij(q) of cij(r) as (see, e.g., Bhatia 1977) 

where 
ClC2/Scc(q> = 1 - ClC2[PEll(q) + pE22(q) - 2pE12(4 +f(4>1 

f(4) = S N c ( 4 > 2 / { S c c ( 4 >  t S c c ( q ) S N N ( q )  - sNc(4>211 

(4) 

(5) 
SNN(q)  and SNc(q) being the number-number and the number-concentration correlation 
functions, respectively. Corresponding to equation ( l ) ,  let us define the quantity W(r)  
as 

The substitution of equation (4) into equation (6) yields 

where 
w r >  = [c11 ( r )  + C 2 2 W  - 2c12(r) + m l / 2 P  
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m) = [(243pi - 1  1 w ( q )  exp(iq r ) .  

From equations (2) and (7), it is obvious that, if we assume 

(i) thatf(q) = 0 for all q in equation (4) and 
(ii) that cV(r) = -/3qV(r) for r > u, 

we get W(r)  = -u ( r )  for r > u (Copestake et a1 1983). 
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(7b) 

This is the key relation in the ordering potential approach. 
As is seen from equation (9, assumption (i) will be valid provided that SNc(q) is small 

enough in comparison with S N N ( q )  and Scc(q). In general, however, this assumption is 
not satisfied (see, e.g., Gonzalez and Silbert 1987). As for assumption (ii), this is strictly 
valid only as r -  m. It is, thus, not always obvious whether assumptions (i) and (ii) are 
satisfied. Nevertheless, it should be noted that the approach has been a reasonably 
useful tool. This suggests that in the vicinity of this approach there might exist a more 
satisfactory route by which assumptions (i) and (ii) are not always needed. 

In order to incorporate the implication of Wexp(r) more correctly, it may be advan- 
tageous to introduce such functions fj(r) that firstly they satisfy 

and secondly fi,(r) approaches cij(r) as f ( q )  approaches zero, because it is just such 
functions which the neutron scattering data are related to via the equation WexP(r) = 
W(r) .  Corresponding to assumption (ii) in the ordering potential approach, let us define 
functions qyP(r)  by 

for r > u. 

Note that functions qyP(r)  are not always the interionic potentials q V ( r ) .  In contrast 
with the ordering potential approach, we can use correctly the implication of the equation 
WexP(r) = W(r) for qy!’(r). In particular, under the assumption of a factorisable 
qyP(r) ,  namely 

(9) fij(r) = -PVyP(r )  

qyP(r)  = aiajqexp(r) forr > u (10) 

we get from equations (8)-(10) and WexP(r) = W(r)  that 

qexp(r) = - 2 ~ ~ ~ p ( r ) / ( a ,  - 

It is certain that fi,.(r) reflects any interionic correlation. Regarding the correlation, 
we know the exact relation 

hij(r) = -1 for r < CJ (11) 

but this is incomplete. Therefore, if we can find an equation relating f j ( r )  to hV(r) or 
cij(r), equations (9) and (11) give promising closure relations for this equation, from 
which we can calculate the static structure factors. The equation might be obtained 
generally on the basis of statistical mechanics. At present, however, we do not know 
how to obtain it. 

Now, the success of the ordering potential approach suggests that firstly the physical 
meaning and functional behaviour offi,(r) must be very similar or close to those of cii(r) 
and secondly the equation relating J j ( r )  to hij(r) would have the same structure as that 
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of the oz equation defining cV(r).  Noting that the oz equation has only two system 
parameters ( p  and c 1  (or c,)), we propose the following equation: 

hij(r) =fij(r> + P xi I dr1 f i j ( 1 . 1  - rl)hij(rl) 

cij(r> =f i j<r> + P c (xi - c i )  1 drl  fij(lr1- r~)h i j ( r l )  

(12a) 
i 

or, with the elimination of hij(r) from equations (3) and (12a), 

(12b) 
i 

where x 1  and x ,  are positive-number parameters satisfying 

x1 + x2 = 1. (13) 

Together with equations (9) and (11) acting as closure relations, equation (12) defines 
a theory for the calculation of static structures by using the neutron scattering data. It is 
obvious from equation (12) that, in the choice of xi  = ci, fii(r) = cii(r) or f ( q )  = 0, and 
the theory is equivalent to the work of Copestake et a1 (1983). Although we cannot give 
any statistical-mechanical basis for equation (12) at present, its validity and the choice 
of xi  may be justified by the agreement of the theory with experimental facts and the 
degree of self-consistency of the theory. The latter may be judged by the extent to which 
W(r) ,  calculated by equation (6) with the use of the theoretical structure factors, agrees 
with W(r) ,  given by equations (8) and (9) (a kind of sum rule!) 

Now, let us consider the case of the following factorisable fii(r) given by equations 
(9) and (10) in which, as will be shown below, we can obtain a simple criterion for the 
self-consistency of the theory: 

fij<r> = -PaiajV(r> f o r r > a  (14) 

x1a1 + x2a2 = 0 (15) 

where V ( r )  = qexP(r). In this case, if we choose xi to satisfy 

we can decouple equation (12a) into the following two integral equations (Ginoza 1987a, 
1988): 

hi j ( r )  = hs(r) - ( - ~ ~ / x ~ ) ~ ' j - ~ h ~ ( r )  ( i , j  = 1,2) (16a) 

fij(r) =fs(r) - ( - ~ 1 / ~ 2 ) ' ' j - ~ f ~ ( r >  ( i , j  = 1,2) (16b) 

where 
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With the use of this expression for Scc(q), equation (6)  becomes 

where 

On the other hand, equations (8) and (14) yield 

W(r) = (a,a2/~1xz)V(r) (20) 
where we used equations (13) and (15). As is discussed above, the self-consistency of 
the theory is judged by the extent to which equations (19) and (20) agree with each 
other. It is easy to show from equations (17) and (18) that, in the case of A,, = 0, equation 
(19) is equivalent to equation (20) and the self-consistency is perfect. In the application 
of the theory, however, we must choose the case of A,, # 0 in order to improve the theory 
in the light of experimental facts. As is obvious from equation (19), the self-consistency 
of the theory in this case may need the condition 

lAol = A  1. (21) 

A = I(c1a1 + czaz)(c1a2 + cZal>/~la2l. (22) 

From equations (13) and (15), 

Now, one of the present authors (Ginoza 1987a, 1988) proposed the modified MSM 
which is equivalent to the theory given by equations (12a) and (14). This model has been 
applied to binary liquid alloys (Aniya and Ginoza 1987, 1988, Ginoza 1987b, 1988). It 
is interesting to investigate critically these studies on the basis of the self-consistency 
criterion (21) obtained above. 

The solution (16) yields the following relationship between S,,(q), SNc(q)  and S,,(q): 

where 

So(q) = 1 + p drh,(r) exp(iq.r). i 
The validity of equation (23) was discussed in the limit q + 0 on the basis of available 
experimental results, and it was shown that the agreement of equation (23) with the 
experimental results is reasonably good except for at both ends of the concentration 
range (Ginoza 1988). Now, equation (23) is the general result corresponding to solution 
(16) which has no relation to the choice of concentration and potential function V ( r ) .  
However, equation (22) shows that A approaches unity as c1 or c2 approaches zero, 
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Figure 2. The function - W ( r )  at 1075 K for c, = 
0.8, U = 2.65, A = 1.145 anda, = 0.473: curve A, 
A = 0; curve B, A = 0.02; ---, fitting formula in 
figure 1. 

Figure 3. The function -W(r) at 1075 K for c ,  = 
0 .8 , a=2 .65 ,1  = 1.145andal =0.473:curveA, 
A = 0.01; curve B, A = 0.02; curve C ,  A = 0.04. 

unless clal + c2a2 = 0 or c la2  + c2al = 0. Therefore, equation (21) means that in both 
limits (c1 = 0 and c2 = 0) the modified MSM is, in general, inconsistent. In fact, equation 
(23), in the limit q 4 0, deviates in the neighbourhood of both ends of the concentration 
range from the experimental thermodynamic result (Ginoza 1988). 

3. Results and discussion 

Corresponding to the values of Wexp(r) for liquid Li4Pb at 1075 K in figure 1, figure 2 
shows the behaviour of W(r)  obtained from equation (6) using solution (16) with q ( r )  = 
exp(-Ar)/r, where o = 2.65, A = 1.145, al  = 0.473 and A = 0 for the full curve A and 
A = 0.02 for the full curve B and the broken curve represents the fitting formula in figure 
1. Both curve A and curve B agree reasonably well with the distribution of values of 
- WexP(r) in figure 1. This suggests that the best agreement of the modified MSM with 
experiment may be attained for a parameter in the region of 0 < A < 0.02 in the case of 
liquid Li4Pb. In fact, Aniya and Ginoza (1987) investigated the temperature dependence 
of the static structure factor of liquid Li4Pb on the basis of the modified MSM with q ( r )  = 
exp(-Ar)/r and showed by the choice of A = 0.012 that the obtained temperature 
dependence agrees reasonably well with the measured one. This value of A is compatible 
with equation (21). 

In relation to figure 2, it may be worthwhile to point out the interesting behaviour of 
- W(r)  and that, for A # 0, it has a negative minimum. This is shown in figure 3 with the 
use of a different scale for the ordinate axis. In fact, we can see in figure 1 that - WexP(r) 
has a negative minimum for r = 5.2 A. Copestake et a1 (1983) suggested that such 
behaviour of - Wexp(r) should be related to the fact that liquid Li4Pb is a metal and 
conduction electron screening often produces oscillatory effective pairwise interionic 
potentials. However, it should be recalled here that this suggestion is based on the 
assumption that Wexp(r) = - u ( r ) .  
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Investigations on S,,(q) of the compound-forming liquid Li71Ag29 and the phase- 
separating liquid Li61Na39, both being zero alloys, were carried out on the basis of the 
modified MSM with q ( r )  = exp(-Ar)/r in the papers by Aniya and Ginoza (1988) and 
Ginoza (1987b), respectively. The self-consistency of the theories used in these papers 
can be analysed in the same way as above. The compatibility of the theories with equation 
(21) is good except in the case of producing the first minimum value of the experimental 
S,,(q) of liquids Li61Na39 by Ruppersberg and Knoll (1977). As for the origin of this 
failure, the works of Hoshino and Young (1986a, b, 1988) suggest that it may be related 
to the choice of q ( r )  rather than to the framework of the modified MSM. In fact, it is 
impossible, even if approximately, that the choice of v(r) = exp(-Ar)/r produces 
WexP(r) shown in figures 2(a) and 2(b) in the work of Hoshino and Young (1986a). The 
investigation regarding this is now in progress. 
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